7.VV&E for Small Expert Systems

From*“ Verification, Validation, and Evaluation of Expert Systems, Volume|”

Small expert systems are those for which direct proof of completeness, consstency, and specification
satisfaction are practical without partitioning the knowledge base. This chapter discusses techniques
for these proofs.

The basic method for verifying properties of smal sysemsis.

1. Represent the property to be verified asalogicd formula

2. Veify thelogica formulausing one of the following techniques:

Verify the formula on a case-by-case basis, eg., by checking each Hoffman Region.
Apply Boolean dgebra smplifications to verify the formula

Completeness

To verify completeness the user must demondtrate that for dl inputs, the expert system producessome
conclusion. Thisisdone by:

1. Congructing alogical formula that represents conditions under which the system is complete; this
logica formulawill be called the completeness formula.

2. Showing that the truth value of that formulais TRUE.

If the expert system E is Cartesian, i.e,. it isrequired to produce vaues of more than one variable, then
the completeness formulafor E isthe AND of the completeness formulas for systems which set each of
the required output variablesfor E.

For asystem E that is required to take one of some set of actions a pseudo-variable is created of which
vaues are the enumerated set of acceptable actions. Then the completeness formulafor E isthe
completeness formulafor a system that outputs the vaue of this variable.

The completeness formulafor an expert system in E which setsasingle variable v is constructed by an
iterative subgtitution process from an initial formula. That initid formulais:

(v=el) OR (v=€2) OR .. OR (v = en) (7.0)

wherev = d isan expression from arule concluson that setsv.

It is generdly not possible to establish the truth of (7.1) directly. However, the user can build a
formulathat expresses the truth of (7.1) in terms of the input variables of the syslem. To build this
formula, the user needs the following hypothesis function on atomic logical formulasin E:

Let X be aformulaof theform,
VARIABLE =VALUE
If thereisarulein E containing X in its conclusion,
H(X) = OR(Hi(X))
where Hi isthe hypothesis (if part) of arulein E which contains X in its then part.
Otherwise H(X) = X.
Using the function H, one can define alogica formulathat expresses (7.1.) in terms of input variables:
Let FO be avariable over logicd formulas.
FO=(8.2);
while
(FO contains an atomic formula for which H(X) !=X)
F = the result of substituting H(X) for X inf;
return FO;

The resulting logical formula, which will be called COMPLETENESS, expresses completenessin
terms of input variablesto the expert system E. E iscompleteif the truth value of thisformulais
TRUE. To provethat COMPLETENESSis TRUE:

1. Write COMPLETENESS in conjunctive normal form.

2. Eliminate OR’s containing logica opposites or dl possible values of avariable.

If the resulting logical expression is TRUE, the system is complete. If the resulting logical expressonis
something else (call it COMPLETEDO for discussion purposes), then COMPLETEOQ expresses the

conditions under which the system produces a conclusion. Although not logicaly true, COMPLETEO
may be true because of mathematica theorems or domain knowledge.

Alternatively, NOT COMPLETEQO may be satisfiable. In this case, the expert system E is not
complete.

Figure 7.1 below illustrates the above explanation of completeness.

Completeness of Investment Subsystem
To show the completeness of the investment subsystem (cal it INV) of KB1, the first step is to
construct the formula (7.1) for INV:

investment = stocks OR investment = "bank account” (7.1.9)
Expressng thisin terms of input conditions gives
("RisK tolerance" = high (7.1b)
AND "Discretionary income exists' = yes)
OR

("Risk tolerance' = low
OR "Discretionary income exists' = no)
Writing thisin conjunctive norma form gives
("RisK tolerance" = high (7.1.0)
OR "Risk tolerance" = low
OR "Discretionary income exists' =no)
AND
("Discretionary income exists' = yes
OR "Risk tolerance" = low
OR "Discretionary income exists' =no)
Thefirst term is TRUE because high and low are the only possible values for risk tolerance. Likewise
the second term is TRUE because yes and no are the only possible vaues for discretionary income
exists. Therefore, the formulaexpressing completeness of INV is TRUE, and INV is complete.

Figure 7.1: Completeness of Investment Subsystem

Congsistency

To verify consstency, the user must demondtrate that for al inputs, the expert system producesa
consgtent set of conclusions, i.e., that for each set of possible inputs, al the conclusions of the expert
system can betrue a the sametime. (Asnoted in an earlier chapter, determining which sets of possble
conclusions are consistent generaly requires expert knowledge.)

To establish consstency, the user must do the following:

1. Congruct a logicad formula that represents conditions under which consstency fails; this logica
formulawill be called the consistency formula.

2. Show that the truth value of that formulais FALSE.

For asystem E that is required to take one of some set of actions, a pseudo-variable is created whose
vaues are the enumerated set of acceptable actions. Then the consstency formulafor E isthe
congstency formulafor a system that, perhaps among other things, outputs the value of this variable.

If there are no sets of inconsistent possible outputs, the system is consstent. Some expert systems are
designed to recommend a set of components of a solution, and no one component contradicts any

other. An investment advisor who recommended to each investor a set of desirable investments would
be an example of this. For such systems, consstency is not an issue.

Let 11,...,In be the sets of mutually inconsistent possible conclusions of E. Each | consists of some set
of conclusons, eg.,

li={Ci1, ..., Ci(mi)} (7.2
where the Cs are possible conclusons of E.
The consgtency formulafor E is.

F(11) or F(12) ... or F(In) = FALSE (7.3)
where

F(li) = Ciland ... and Ci(mi) (7.4)

It is generdly not possible to establish the truth of (7.4) directly. A formulacan be built, however, that
expresses the truth of (7.4) in terms of the input variables of the system. Just asfor completeness, this
formulais constructed by substituting the OR of rule hypotheses that infer a conclusion for that
conclusion. Subgtituting the hypothesis function (7.2) into (7.4) using the iterative algorithm (7.4)
constructs the consistency formula

The resulting logical formula, which will be called CONSISTENCY, expresses congstency in terms of
input variables to the expert system E. E isconsstent if the truth value of thisformulaisTRUE. To
provethat CONSISTENCY isTRUE:

1. Write CONSISTENCY in digunctive normal form.
2. Eliminate ANDs containing logical opposites or other contradictory sets of conjuncts.

If the left hand side of the resulting logica expression is FAL SE, the system is consstent. If the
resulting logical expression is something else (cal it CONSISTENTO for discussion purposes); then
CONSISTENTO expresses the conditions under which the system produces possibly contradictory
conclusions. Although not logicaly fase, CONSISTENTO may be fdse because of mathematical
theorems or domain knowledge.

Alternatively, CONSISTENTO may be satisfiable. In this case, the expert system E is not consistent,
and isinconsstent for the inputs which satisty CONSISTENT().

Congstency of I nvestment Subsystem:

To show the consstency of the investment subsystem (call it INV) of KB1, the first step isto construct
the formula (7.2.3) for INV. The only set of inconsistent conclusonsis:

{investment = stocks, investment = "bank account"} (7.2.9)
Therefore, (7.2.3) for INV is.

investment = stocks AND investment = "bank account” (7.2.b)
To show INV is consistent, one must show that (7.2.b) is FALSE.
Expressing thisin terms of input conditions gives:

("RisK tolerance" = high (7.2.0)
AND "Discretionary income exists' = yes)
AND

("Risk tolerance' = low
OR "Discretionary income exists' = no)

=FALSE
Writing thisin digunctive normal form gives.
("Risk tolerance" = high (7.1.d)

AND "Discretionary income exists' = yes)
AND "Risk tolerance’ = low)
OR
("RisK tolerance" = high
AND "Discretionary income exists' = yes)
AND "Discretionary income exists' =no)
=FALSE
The first term is FAL SE because high and low are contradictory valuesfor risk tolerance. Likewisethe
second term is FALSE because yes and no are contradictory values for discretionary income exists.
Therefore, the left hand side of (7.1.d) isan OR of FALSE's, and isFALSE. This establishes the truth
of the consistency formulafor INV, and therefore INV is consistent.

Figure 7.2. Condstency of | Subsystem

Specification Satisfaction

While the vast range of possible specifications (as well asthe Goedel Incompleteness Theorem makesiit
impossible to give agenerd method for proving specifications, there are some particular kinds of
specifications where certain methods are useful.

Many valid specifications are not directly provable because they are not expressed in the variables and
propositions used for the knowledge base. Before a specification can be proved it must be trandated
into the variables and relations used in the knowledge base. Trandating specificationsinto the
language of a knowledge base requires expert knowledge. Furthermore, this trandation process may
expose conditions under which the specifications are violated.

Step 1: Find all the possible conclusions that are constrained by the specification.

Step 2: Show that each of these conclusions are only made when permitted by the specification; i.e.
for the specification S, and each conclusion C identified in Step 1,

If C then S(C) (7.5)

where §(C) isthe result of substituting the variable values contained in C into S.

Let EC be the conditions under which the expert system E concludes C. EC is computed by procedure
(7.5) above. Suppose:

EC implies S(C) (7.6)

Then whenever C occurs, i.e., when EC istrue, S(C) isdso true. On the other hand, if expert
knowledge causes one to question (8.6), there is reason to think that the expert system can conclude C
when S(C) isfase,

Figure 7.3 shows a reasonable specification for Knowledge Basel.

A reasonable specification for KB1 isthat it never recommend an unaffordable investment.
Step 1: The conclusion, investment = stock, is an investment that might not be affordable.
Step 2: Formulate how each conclusion is affected by the congtraint, e.g.,

Expert system concludes "investment = stock” implies stock is affordable.
The successve subgtitutions of H(X) for X in this statement, usng agorithm (7.4), produce a
succession of ever more detailed statements about when the specification is true. For INV, these
statements are:

If "Risk tolerance” = high

AND "Discretionary income exigts' = yes

the stocks are affordable.

If ("Do you buy lottery tickets' = yes (7.3.9)

OR "Do you currently own stocks' = yes)
AND
("Do you own aboat" = yes (7.3.b)
OR "Do you own aluxury car" = yes)

THEN the stocks are affordable.
The truth of these statements depends on expert knowledge. If experts doubt any of them, it is
probably because the conditions found in KB1 under which it concludes investment = stocks, are not
aufficient to guarantee the specifications. In fact, (7.3.8) seems plausible while (7.3.b) seems wesk.
Thisindicates that the conditions for concluding the intermediate hypotheses,

If "Risk tolerance” = high

AND "Discretionary income exists' = yes
are not completely expressed in KB1.

Figure 7.3. Example Specification for KB1

Foecification Based on Domain Subsets
Many specifications are of the form:
If theinput isin some &t S, (7.7)

then the output satisfies alogica formulaP.

where Sisdefined by alogica formulaC(l) over the input variables, and B(CL1,...,Cn)) isaformula
built over the conclusions, Ci, of the expert system; i.e. (7.7) becomes:

If C(1) then B(CL,....Cn) (7.8)

To prove specifications like (7.8), symbolic evaluation of the knowledge base is a useful technique; the
user can try to prove (7.8) by symbolic evaluation using either forward or backward chaining. With
these proof methods, the user smulates the inference engine operating on inputs using the knowledge
base. However, instead of actua input vaues, the only thing known about the inputsisthat they satisfy
C(l). Thismay be enough, however, to establish that the if apodtion of some of therulesare
satisfied, then the conclusions will be derived within the said part of therule. If so, these conclusons
have been proved true on the basis of the assumptions, C(I). Further reasoning may lead eventudly to
showing that B istrue.

Hereisaforward chaining agorithm to prove B given C(1):

1. AssumeC(l) =TRUE. : (7.9)

2. If thetruth value of B can be established usng known information,

do so and goto X.
3. If theif part of aprevioudy unsatisfied rule can be satisfied,

then set the then part of the rule to TRUE and goto 2

else quit, falling in the attempt to prove B.
4. If Bistrue,

then the specification has been proved
dseif Bisfdse
then the specification is not satisfied.

Here isthe backward chaining agorithm:
1. CURRENT =if C(l) then B(CL,...,.Cn). (7.10)
2. If thetruth vaue of CURRENT can be established, do so and quit with the following result:

If CURRENT is true the specification has been proved,

but if CURRENT isfase, the specification is not true.
3. If thereisan atomic formulaA for whichH(A) '= A (see 7.2)

subgtitute H(A) for A in CURRENT;

Goto 2.

4. Quit with failure to establish the specification.

Figure 7.4 shows the symbolic evaluation of the KB1 example from chapter 5.

To illugtrate symbolic evauation, the following specification will be verified on the origind KB1 of
chapter 5:

If current savings < $3000, recommend that the investment is savings account. (7.4.a)
To prove the requirement, one assumes the condition:
"Savings baance" < $3000 (7.4.b)
and triesto prove that the expert system concludes that:
investment = "bank account". (7.4.0

The strategy for carrying out this proof isto use a modification of the expert system's inference engine.
It must be assumed that the inference engine makes inferences according to the rules of propositiona
logic. Itisleft to the scheduling strategy programmed into the inference engine to determine which of
al the possible inferences that could be made are in fact made. For illugtrative purposes, a backward
chaining Strategy is assumed.

Using a backward chaining strategy to prove that the expert system concludes 7.4.c, the user starts
with that conclusion and shows that it is satisfied. The only way to do thisin Knowledge Base 1B isto
satisfy the "if" part of Rule 2. These conditions are true whenever

"Discretionary income exists' = no. (7.4.d)
Rule 6 makes this conclusion whenever:

"Savings balance" <= $3000. (7.4.€)
50 (7.4.9) follows.

Notice that this proof mimics the inference engine of the expert system. In fact, every step of the proof
could be carried out by the inference engine except for the last step of concluding (7.4.9). However, a
modified inference engine could carry out that step if, whenever a truth vaue for an inequdity was
needed, a knowledge base about inequalities was consulted. In fact, such a knowledge base appearsin
the appendix of this chapter, and contains arule that says

If X<=C then X<C.

Using this rule, a modified inference engine that consults an knowledge base about when atomic
formulas are true is able to automatically prove the desired condition (7.4.9) about the knowledge
base.

Figure 7.4: Symbolic Evauation

The main differences between actud and symbalic inference engines are;
Actud inference engines collect actuad vauesfor variables and use them in evauating the
conditions of rulesto seeif those rulesfire.

Symbolic inference engines have available logical conditions about the value of variables, eg., the
hypotheses C(1). Symboalic inference engines use this known information to infer whether atomic
formulasin rule hypotheses are true or false. 1n an appendix to this chapter appear rulesfor
symbolicaly determining the vaue of some arithmetic atomic formulas.

To congtruct a symbolic inference engine from an actua inference engine, the function that determines
the truth of atomic formulasis replaced, but leaves the rest of the inference engine code intact. The
actual inference engine determines the truth of atomic formulas by:

Looking up the actua vaues of variables.
Substituting them into the atomic formula
Determining the truth value of the result.
In asymbolic inference engine, the user can aso evauate atomic formulas when only conditions about

variable vaues are known, but the actua vaues are unknown. The symbolic inference engine evauates
atomic formulas by:

Assuming the known conditions about the variables in the knowledge base.
Using thisinformation to establish the truth of the atomic formula

To build a symbolic inference engine requires the user to replace the function for the actua evauation
of atomic formulas with afunction for symbolic evauation, and to leave the rest of the inference aone.

Figure 7.5 ligt the steps involved for the actual inference engine.

Actual inference engine For KB1, suppose the user said that his or her savings baance was $2000.
Then the truth vaue of the atomic formula

savings balance < $3000 (7.5.9
can be determined by subgtituting in $2000 for "savings balance” to produce:
$2000 < $3000 (7.5.b)

Thisinequdlity is seen to be TRUE.
Symbolic inference engine: Suppose that:

"savings baance' <= $2000 (75.c)
isknown to asymbolic inference engine. The symbolic inference engine triesto prove:
"savings balance' <= $2000 (7.5.d)

IMPLIES "savings balance" <= $3000

This formula is seen to be true. In fact, using the following row of the table in the appendix for

evauating atomic formulas,
ATOMIC FORMULA TRUTH CONDITION FALSE CONDITION
[ab]=<c b<=c a>C

one may conclude (7.5.d).

Figure 7.5: Symbolic Inference Engine

Effect of the Inference Engine

The consstency and completeness techniques and the forward and backward symbolic inferences
engines presented so far in this chapter are based on the assumption that fairly standard inference
engines are used in processing the expert system knowledge base. These stlandard dgorithms are
capable of making al the inferences of propositiona logic. Inference engines can depart from these
agorithms by either error or design. For example, an inference may stop inference after the first
knowledge base conclusion.

The most probable effect of departuresin the inference algorithm from the standard is that the inference
agorithm makes fewer inferences than the standard agorithm. An inference engine error of
commission, afaseinference, ismore likely to be found during testing of the inference engine, while an
omitted inference is harder to detect.

Consstency: Omitted inferences do not affect the above methods for finding consistency. The
omissions merely mean that there are fewer conclusions to be inconsistent than expected.

Completeness: Omitted inferences do affect completeness. The omitted inferences may cause the
inference engine not to make an expected conclusion. Where the inference engine is known to omit
some propositiond logic inferences, it is suggested that completeness be verified usng asymbolic
verson of the same inference engine used on the knowledge base, incomplete though its inferences
may be.

Satisfaction Of Specification: Specifications can be verified usng symbolic versions of thesame
inference engine used to run the knowledge base. This provides the best insurance that the inference
engine will actualy make inferences that correspond to those made during the proof of the specification
according to the rules of logic.

Inference Engines for Very High Reliability Applications

For gpplications where very high religbility isrequired, it is essentia that the inference engine be known
to make correct inferences. CLIPS (C Language Integrated Production Systems, first released by
NASA in 1988) isthe only expert system shell claimed to have a certified correct inference engine.

In order to know that an inference engine makes correct inferences, it is necessary that the inference
engine be proven correct. One possble standard of correctnessisthat the inference engine makesdl
inferences possible with propostiona logic given the information gathered from the user and other

10

sources. This, or an dternative standard, should be proved by carrying out aforma correctness proof
on the source code of the inference engine, practica only for small, smple ones.

On the basis of this or other proven description of inference engine behavior, agorithms can be
congtructed like those shown in this chapter for consstency, completeness, and symbolic evauation for
specification satisfaction.

In order to carry out in practice a correctness proof or equivalent description of the inference engine it
is necessary that both the source code of the inference engine be available and short and smple enough
to alow aproof to be carried out, given the primitive state of program correctness proofs.

11

